Hopes Advance Pre-Feasibility Study NPV Of $5.6 Billion at $100 / Tonne FOB

VANCOUVER, BRITISH COLUMBIA--(Marketwire - Sept. 19, 2012) - Oceanic Iron Ore Corp. (TSX VENTURE:FEO)(OTCQX:FEOVF) ("Oceanic", the "Company") is pleased to announce that it has received the results of a Pre-Feasibility Study ("PFS") prepared by Micon International Limited ("Micon") in respect of the Company's 100% owned Hopes Advance project. The PFS was completed using the NI 43-101 Mineral Resource estimate reported in the Company's news release of April 2, 2012 which the PFS has converted to a mineral reserve within engineered pit designs.


The PFS Delivers Positive Economic Results:


-- Optimal production case delivers robust economics

-- Base case pre-tax NPV of $5.6 billion, pre-tax unlevered IRR of

20.5% and levered IRR (60% debt finance) of 23.2% at a price of $100

/ tonne FOB for a 66.5% Fe concentrate;

-- Life of mine operating cost of approximately $30/tonne;

-- Initial production of 10 million tonnes of concentrate per annum

commencing in 2017;

-- Expansion to production of 20 million tonnes per annum in 2027

funded through operating cash flows, to coincide with availability

of hydroelectric power;

-- Life of mine 31 years;

-- $2.85 billion initial capital cost inclusive of $0.93 billion

indirect costs and contingency;

-- Scheduled expansion capital cost of $1.61 billion 2025 - 2026,

including $0.49 billion indirect costs and contingencies;

-- Sustaining capital of $0.77 billion over life of mine.


(i)CAD $1.00 = USD $1.00

Additional Attributes of the Project:


-- Project implementation and development schedule independent of third

party infrastructure

-- Construction and operations to commence utilizing self-generated


-- Intention to connect to the Hydro Quebec grid in 2025 to support

expansion (as reported in the Company's press release of September

5, 2012).

-- Projected lowest quartile operating cost per tonne resulting from "no

rail" advantage, simple metallurgy and low waste / ore strip ratio (0.57

: 1 in years 1 to 15 of production, 1.17 : 1 over life of mine).

-- Pilot plant metallurgical testwork confirms product quality suitable for

pellet or sinter feed

-- 66.5% Fe grade concentrate with low deleterious elements and silica

content less than or equal to 4.5%

-- High weight and Fe recoveries using a simple flow sheet

-- Construction of a marine facility in Hopes Advance Bay at Pointe

Breakwater as proposed in the Company's Marine Facility and Shipping

Logistics Study prepared by AMEC International in September 2011.


Steven Dean, Chairman and CEO noted: "Since the acquisition of the Ungava properties in November 2010, we have fast-tracked the development of the Hopes Advance project through to the feasibility stage with the delivery today of a very robust pre-feasibility study. The study presents a construction schedule that enables the commencement of commercial production of iron ore in 2017 with the development components, in particular the construction of key infrastructure, under our control. Operating and capital costs have been refined based on the higher level of engineering and analysis typical of a pre-feasibility study when compared to a preliminary economic assessment. The results of the pre-feasibility study continue to validate the project's position as a future lower quartile operating cost producer, which in turn underpins the project's resilient economics. These economics together with the high quality metallurgical characteristics of the Hopes Advance deposit, help to define the Hopes Advance project as one of the premier large scale iron development projects globally."

Alan Gorman, COO added: "We are pleased with the quality and attention to detail that our consultants Micon, Met-Chem, Golder, and AMEC, have applied in generating the Hopes Advance pre-feasibility study. The attributes associated with extraction, particularly our favorable strip ratio, and the simple process required for concentration validated through our pilot plant testwork, as well as no rail requirement, support that we will be a low cost producer. The capital and operating cost assumptions are reasonable and we are confident that with an appropriate level of engineering and planning, the project can be delivered on schedule and on budget.

The project's location adjacent to an identified port site is a key competitive advantage and my past involvement with northern projects, both in Nunavik and on Baffin Island, together with the conclusions reached by AMEC in their Shipping and Marine Logistics Study, lead me to conclude that shipping from our location is viable. Recognizing that we have undertaken significant upfront work in respect of metallurgy and that our mine plan and schedule are solid, we expect minimal variations to our production scenario, which will be further optimized, as we advance to completion of our Feasibility Study."

Next Steps


-- Pot Grate Pelletizing test work Q4 2012

-- Strategic Partnering and Project Financing 2012 - 2013

-- Fast track completion of the Feasibility Study 2012 - 2013, including a

final shipping logistics study

-- Complete environmental impact assessment and permitting 2013 - 2014

-- Negotiate Stakeholder Impact and Benefits Agreement 2013 - 2014

-- Construction 2014 - 2016

-- Concentrate Shipments 2017 - 2047


Pre-Feasibility Study

The Company engaged a team of specialized consultants, led by Micon International Limited ("Micon") and Met-Chem Canada Inc. ("Met-Chem") to produce the PFS. Micon performed the mine design and pit optimization and compiled the economic results for the project. Met-Chem performed the process flow sheet design and equipment selection based on the results of the Company's metallurgical and pilot plant test work performed by SGS Mineral Services Lakefield ("SGS"). In addition, Met-Chem completed the site infrastructure design. Port marine infrastructure design was completed by AMEC International (September 2011). Golder Associates Ltd. carried out studies for tailings disposal and waste rock.

The base case in the PFS for the Hopes Advance project assumes initial production of 10 million tonnes of concentrate per annum commencing in 2017 utilizing self generated power, expanding to production of 20 million tonnes of concentrate per annum using hydroelectric power from 2027, following connection to the grid in 2025 and construction to support the expansion in 2025 and 2026.

The PFS has been based on the Mineral Resource prepared by Eddy Canova, P.Geo., OGQ reported in a Company news release on April 2, 2012 and filed on SEDAR on May 17, 2012.

The open pit reserves, summarized below, are based on a 25% Fe cut off grade. The reserves shown below are calculated based on industry standard pit optimization techniques guiding detailed pit designs including ramps and surface constraints. The mineral reserve is contained within the mineral resource. The effective date of the mineral reserve estimate is September 19, 2012.


Table 1 - NI 43-101 In-Pit Mineral Reserve Estimate Hopes Advance Bay (25%

Fe Cut-off)



Recov. Concentrate

Category Tonnes Fe (%) (%) Tonnes


Proven Reserves 763,276,000 32.3% 37.4% 285,428,000


Probable Reserves 595,990,000 32.1% 37.1% 221,246,000


Proven & Probable Reserves 1,359,266,000 32.2% 37.3% 506,675,000



There are no known legal, political, environmental or other risks that could materially affect the potential development of the mineral reserve.

The PFS mine schedule and economic analysis does not include inferred resources of approximately 72.7 million tonnes of 32.8% Fe. Mineral resources that are not mineral reserves do not have demonstrated economic viability.

Pre-Feasibility Metrics

The table below lists the key PFS metrics. The analysis is based on the assumption that production begins in 2017.

Table 2 - PFS Results



Variable Results


Price assumption - FOB $100 / tonne



Net Present Value (8%) (pre-tax/post-tax) $5.6 billion $3.2 billion


Pre-tax IRR (unlevered / levered) 20.5% 23.2%


Post-tax IRR (unlevered / levered) 16.8% 19.2%


Post-tax Payback 5 years


Mine Life 31 years


10 Million Tonne Initial Capital Costs $2.85 billion


20 Million Tonne Expansion Capital Costs $1.61 billion


Sustaining Capital Expenditure (LOM) $0.77 billion


Life of Mine Operating Cost per tonne $30.18/tonne


Strip Ratio Years 1 - 15 0.57


Strip Ratio Life of Mine 1.17



As noted above, the PFS assumes a concentrate selling price of $100/tonne FOB and also takes into consideration the 2% royalty payable to the vendors of the project. The PFS assumes that the Company exercises its right to purchase half of this royalty for $3 million in 2017, the first year of commercial production.

Analysis of the economics has been undertaken on both a pre-tax and post-tax basis and IRR is presented on both an unlevered and levered basis. In respect of the leveraged case, the key assumptions are as follows:


-- Initial capital 60% debt financed;

-- Annual interest rate of 8%;

-- Upfront financing fee of 3%;

-- 7 year term post commencement of commercial production;

-- Expansion capital is assumed funded through operating cashflow.


Figure 1 highlights the sensitivity of pre and post tax NPV to the FOB concentrate selling price:

To view Figure 1 - NPV (Unlevered) Sensitivity to FOB Ungava Bay Iron Ore Price, visit: http://media3.marketwire.com/docs/feo919-F1.pdf.

Capital Costs

Construction Capital Costs are set out below:

Table 3 - Capital Costs



Initial Capex Expansion Capex

2014 to 2016 2025/2026

Capital Description ($000) ($000)


Mine Equipment 92,658 61,231


Mine Development 66,203 2,918


Crusher 29,674 30,355


Concentrator 481,514 492,643


Pipeline 56,740 83,787


Port Filtering and Drying 325,654 267,401


Port and Marine Infrastructure 288,000 84,000


Power 377,892 26,775


Site Infrastructure 81,591 25,675


Site Roads 33,583 -


Camp and Offices 29,575 7,175


Airstrip Upgrade 11,824 -


Fresh Water Supply 10,469 3,621


Sewage 4,554 1,574


Tailings and Hazardous Waste Disposal 23,577 30,122


Communications 2,305 -


Mobile Equipment 9,983 -


Indirect Costs 499,962 249,378


Contingency and Closure Bond 427,899 241,135



Total Construction Capital $2,853,657 $1,607,790



The estimated initial capital cost required to support the initial phase of production of 10 million tonnes of concentrate amounts to approximately $2.85 billion. This compares to a cost of approximately $2.4 billion outlined in "Scenario 1" of the Company's preliminary economic assessment (PEA) published in November 2011. Significant components of the increase in capital cost include the addition of concentrate drying and concentrate storage infrastructure and equipment which had not been accounted for in the PEA, in addition to increased indirect costs.

Cost reductions between the PEA and PFS have been realized in the mining and mineral processing components of the capital expenditures, reflecting the attributes associated with extraction, in particular the strip ratio and a simplified process required for concentration. In addition, cost reductions have been realized in respect of power infrastructure, where the estimated initial capital cost of self-generation is below the PEA estimate of capital cost required for the development of an electrical transmission line (the PEA base case assumed that electrical power would be available at the time of project construction).

The PFS assumes that once the Company moves to the use of hydroelectric grid power in year 9 of the project, the expansion capital required in respect of power is limited given the fact that the transmission line is assumed financed by Hydro Quebec and amortized through the power rate charged to the Company by Hydro Quebec.

Operating Costs

A summary of the estimated operating costs is set out below:

Table 4 - Operating Costs (excluding royalty)



Years Years Years

2017 - 2024 2025 - 2026 2027 - 2047


(10 MM T/YR &

Self (10 MM T/Y & (Post

Generated Hydroelectric Expansion - Life of Mine

Category Power) Power) 20 MM T/YR) Average



($/tonne all

material) $1.57 $1.59 $1.23 $1.27




($/tonne product) $5.46 $6.30 $7.78 $7.37



($/tonne product) $20.87 $18.35 $17.45 $18.02



($/tonne product) $2.13 $2.13 $1.45 $1.58


Site Services

($/tonne product) $3.33 $2.77 $2.04 $2.27


G&A (Site only)

($/tonne product) $1.38 $1.38 $0.85 $0.95



Total Operating

Cost /

tonne product


royalty) $33.17 $30.93 $29.57 $30.18



The low operating costs are a function of a number of factors including:


-- No rail component given the project's proximity to the identified port

site at Pointe Breakwater;

-- A very low strip ratio, averaging 0.57:1 waste to ore in the first 15

years of production and 1.17:1 over the life of mine;

-- Straightforward metallurgy and high Fe recoveries, reflected in the

simple flowsheet and low operating costs.


Overall, operating costs have increased relative to the PEA reflecting the net effect of higher electricity costs associated with self-generated power and additional costs for concentrate drying, offset by cost reductions in mining and other process costs.

Before the increase in power costs, total costs per tonne decreased by approximately $1.40/tonne in comparison to the PEA estimate.

In particular, in regards to power, the PEA assumed that Hydro Quebec would offer an L rate of $0.045 per kilowatt hour to the project. Subsequent discussions with Hydro Quebec confirmed that it would not be consistent with current government policy to offer the Company the L rate. In terms of concentrate drying, the PEA did not include operating costs (or capital costs) for concentrate drying in order to reduce concentrate moisture content to 2% to accommodate concentrate handling during the winter months. The PFS includes estimates with regard to such additional costs.

The chart below sets out a sensitivity of the pre-tax NPV based on a factor of the base fuel price delivered to site for power generation of $0.652/Litre for No. 6 Oil. Diesel fuel for equipment operation has been assumed at $0.75/ Litre.

To view Figure 2 - Pre-tax NPV Sensitivity to Base Fuel Price, visit: http://media3.marketwire.com/docs/feo919-F2.pdf.

Conceptual Layout

A conceptual diagram outlining the project layout is set out below. As illustrated, the deposits are optimally located within approximately 26 km from the planned port site at Pointe Breakwater (discussed in more detail below) such that a pipeline will run from the concentrator, expected to be placed in proximity to all deposits, to the port. The Company has produced a 3D animated simulation of the project which can be accessed via its website www.oceanicironore.com and which provides a visual interpretation of the project.

The Company's power plant is planned to be located at the port site. The Company expects hydroelectric power from one of the existing operational power reservoirs near Ungava Bay is anticipated to be available by 2025.

To view Figure 3 - Hopes Advance Conceptual Layout, visit: http://media3.marketwire.com/docs/feo919-F3.pdf.

Metallurgical Pilot Plant Program


In September 2011, the Company took the decision to accelerate its metallurgical test work program in order to continue the fast-track development of the Hopes Advance project. This included the completion of a comprehensive metallurgical bench scale testing program earlier this year by SGS.

In addition to the bench scale work, SGS has undertaken a pilot plant testwork program to determine a flow sheet for the recovery of hematite and magnetite. The pilot plant test work was also used to determine the appropriate size of equipment for the flow sheet as well as the optimum grinding equipment and power requirements.

Bulk Samples and Composites

During the 2011 field season, the Company collected bulk samples to support the bench scale test work and the pilot plant.

The 180.1 tonne Castle Mountain bulk sample was collected from the same three trenches that provided samples for historic metallurgical work conducted in the late 1950s. A 95.1 tonne sample was composited and blended from the Castle Mountain bulk sample for the pilot plant test.

Bench Scale Testing

Bench scale work was conducted on a sample of the Castle Mountain bulk sample and included head mineralogy, bench-scale grindability testing, bench-scale gravity and low intensity magnetic separation (LIMS) testing. A full suite of grindability testing was conducted on the sample. The sample was classified as soft to very soft in terms of rod and ball milling (RWI and BWI) and very soft in terms of autogenous milling (AWI). This bench work complements the Mozley Table and Davis Tube test work conducted on drill core composites earlier this year at SGS.

Pilot Plant Testing

The initial flowsheet for the pilot plant test was designed based on historic metallurgical work with modifications indicated by the results of bench scale Mozley Table and Davis Tube tests conducted on drill core composites from Hopes Advance earlier this year (noted above).

The pilot plant test work concluded that an optimized flowsheet composed of single-stage semi autogeneous milling (SAG), followed by rougher, cleaner, and recleaner spirals was optimal. The rougher spiral tails were sent to a LIMS Cobber for recovery of the remaining magnetite. The Cobber concentrate (12.9% of the feed) is then sent to a regrind mill for further liberation of the magnetite. The liberated magnetite is then sent to the two-stage cleaning LIMS to produce an iron rich magnetite concentrate of 70.0% Fe.

The Castle Mountain composite, with a Head Fe of 34.2% and a magnetite content of 11.8% (Table 5) responded well to the optimized pilot plant flowsheet. With a target grind of 300 microns the gravity circuit produced concentrate with a SiO2 content of 4.8%. Not only did the gravity circuit recover hematite, it recovered 46.7% of the magnetite (Table 6). The LIMS circuit with a target grind of 37 microns (minus 400 mesh) produced concentrate with a SiO2 content of 3.0%. The LIMS circuit recovered another 49.8% of the magnetite. The optimized circuit produced a combined concentrate with 4.5% SiO2 with a weight recovery of 37.6% and an iron recovery of 73.1%.

To view Figure 4 - Optimized Flowsheet, visit: http://media3.marketwire.com/docs/feo919-F4.pdf.

Figure 4 above sets out the optimized flowsheet. A description of the process is set out below:


A. Crushed ore is fed into a SAG mill (no ball mill required at this

stage), where the ore is ground to minus 50 mesh (300 microns);

B. Ground ore is passed through a series of spirals to recover hematite,

coarse magnetite, and aggregates of hematite and magnetite. A gravity

concentrate (gc) is recovered;

C. Tailings (rougher tails) from the spirals are sent to a magnetic cobber

(low intensity magnetic cobber) where particles containing magnetite are

separated from particles that do not contain magnetite;

D. Only 12.9% by weight of ore requires fine grinding for magnetic

separation processing;

E. Residual magnetite containing particles are ground to minus 400 mesh (37


F. Ground magnetic material is passed through LIMS to recover the remaining

magnetite. The magnetite concentrate (mc) is combined with the gravity

concentrate (gc) to form the final concentrate (fc). By recovering the

magnetite after gravity separation the amount of material that has to be

finely ground is significantly reduced.


Table 5 - Analysis of Head for Optimized Castle Mountain Pilot Plant Test



Composite Fe% Satmagan%


Castle Mountain 34.2 11.8



Table 6 - Optimized Pilot Plant product quality and recovery



Composite / Streams Mass K80 Grade % Distribution (%)

Dist. % microns Fe SiO2 Fe Satmagan


Castle Mountain


Recleaner Spiral Concentrate 31.5 144 65.9 4.8 60.6 46.7

Secondary LIMS Cleaner Con. 6.1 33 70.0 3.0 12.5 49.8

Combined Concentrate 37.6 66.6 4.5 73.1 96.5



The results of the pilot plant test work on the composite suggest that Castle Mountain iron ore:


-- Is soft;

-- Can be processed with a simple flow sheet;

-- Produces a concentrate with low SiO2 and low deleterious elements;

-- Produces concentrate with approximately 37.6% weight recovery and

approximately 73.1% iron recovery, with 96.5% magnetite content recovery

(Satmagan) (see Table 6 above).


The other zones at Hopes Advance can be expected to respond well to a similar flowsheet given the similarity in response to bench scale testing by Mozley Table and Davis tube as indicated by the results shown in Table 7.

Table 7 - Summary of overall concentrate grade from Mozley Table and Davis Tube bench tests



Deposit Overall Concentrate Grade Overall Recovery

Fe SiO2 Al2O3 Sat MnO Wt Fe SiO2 Sat

% % % % % % % % %


Castle Mountain 65.87 4.42 0.02 30.84 0.33 39.34 78.60 4.34 73.97

Iron Valley 65.97 4.64 0.04 25.48 0.33 40.49 80.58 4.76 62.92

Bay Zone 66.96 4.46 0.03 59.15 0.28 40.08 81.01 4.38 81.06

West Zone 66.20 4.31 0.03 42.55 0.58 40.19 76.93 4.49 73.11



Next Steps

The complete report in respect of the PFS, including further details on mine reserves and schedule layouts, drawings and the results of metallurgical test work and pilot plant will be filed on SEDAR and on the Company's website within 45 days of this news release.

In the coming months, the Company will be focused on continuing to fast-track the development of the project, including:


-- Strategic Partnering and offtake agreements

-- Pot Grate Pelletizing test work

-- Completing a Feasibility Study

-- Completing the environmental impact assessment and permitting

-- Negotiate Stakeholder Impact and Benefits Agreement


Eddy Canova, P. Geo. (Q403), the Exploration Manager for the Company and a Qualified Person as defined by NI 43-101, has reviewed and is responsible for the technical information contained in this news release.

Conference Call Details


Conference Call Date: September 19, 2012

Start Time: 10:30am PST / 1:30pm EST

Call in Number: 1 (800) 659-3814

Participants are asked to dial in 10-15 minutes in advance of the

commencement of the conference call.


OCEANIC IRON ORE CORP. (www.oceanicironore.com)

On behalf of the Board of Directors

Steven Dean, Chairman and Chief Executive Officer

This news release includes certain "Forward-Looking Statements" as that term is used in applicable securities law. All statements included herein, other than statements of historical fact, including, without limitation, statements regarding potential mineralization and resources, exploration results, and future plans and objectives of Oceanic Iron Ore Corp. ("Oceanic", or the "Company"), are forward-looking statements that involve various risks and uncertainties. In certain cases, forward-looking statements can be identified by the use of words such as "plans", "expects" or "does not expect", "scheduled", "believes", or variations of such words and phrases or statements that certain actions, events or results "potentially", "may", "could", "would", "might" or "will" be taken, occur or be achieved. There can be no assurance that such statements will prove to be accurate, and actual results could differ materially from those expressed or implied by such statements. Forward-looking statements are based on certain assumptions that management believes are reasonable at the time they are made.

In making the forward-looking statements in this presentation, the Company has applied several material assumptions, including, but not limited to, the assumption that: (1) there being no significant disruptions affecting operations, whether due to labour/supply disruptions, damage to equipment or otherwise; (2) permitting, development, expansion and power supply proceeding on a basis consistent with the Company's current expectations; (3) certain price assumptions for iron ore; (4) prices for availability of natural gas, fuel oil, electricity, parts and equipment and other key supplies remaining consistent with current levels; (5) the accuracy of current mineral resource estimates on the Company's property; and (6) labour and material costs increasing on a basis consistent with the Company's current expectations. Important factors that could cause actual results to differ materially from the Company's expectations are disclosed under the heading "Risks and Uncertainties" in the Company's MD&A filed August 29, 2012 (a copy of which is publicly available on SEDAR at www.sedar.com under the Company's profile) and elsewhere in documents filed from time to time, including MD&A, with the TSX Venture Exchange and other regulatory authorities. Such factors include, among others, risks related to the ability of the Company to obtain necessary financing and adequate insurance; the economy generally; fluctuations in the currency markets; fluctuations in the spot and forward price of iron ore or certain other commodities (e.g., diesel fuel and electricity); changes in interest rates; disruption to the credit markets and delays in obtaining financing; the possibility of cost overruns or unanticipated expenses; employee relations. Accordingly, readers are advised not to place undue reliance on Forward-Looking Statements. Except as required under applicable securities legislation, the Company undertakes no obligation to publicly update or revise Forward-Looking Statements, whether as a result of new information, future events or otherwise.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.
Related Stocks:
Stock Market XML and JSON Data API provided by FinancialContent Services, Inc.
Nasdaq quotes delayed at least 15 minutes, all others at least 20 minutes.
Markets are closed on certain holidays. Stock Market Holiday List
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.
Press Release Service provided by PRConnect.
Stock quotes supplied by Six Financial
Postage Rates Bots go here